17 research outputs found

    Salsa20 based lightweight security scheme for smart meter communication in smart grid

    Get PDF
    The traditional power gird is altering dramatically to a smart power grid with the escalating development of information and communication technology (ICT). Among thousands of electronic devices connected to the grid through communication network, smart meter (SM) is the core networking device. The consolidation of ICT to the electronic devices centered on SM open loophole for the adversaries to launch cyber-attack. Therefore, for protecting the network from the adversaries it is required to design lightweight security mechanism for SM, as conventional cryptography schemes poses extensive computational cost, processing delay and overhead which is not suitable to be used in SM. In this paper, we have proposed a security mechanism consolidating elliptic curve cryptography (ECC) and Salsa20 stream cipher algorithm to ensure security of the network as well as addressing the problem of energy efficiency and lightweight security solution. We have numerically analyzed the performance of our proposed scheme in case of energy efficiency and processing time which reveals that the suggested mechanism is suitable to be used in SM as it consumes less power and requires less processing time to encrypt or decrypt

    Influence of Various Plant Spacing on Plant Population and Yields of Cotton (Gossypium Arboreum L.)

    No full text
    To boost output and lower cotton input costs, a narrow plant spacing production system has been proposed as an alternative to the conventional method. However, more examination through into performance of this production system in various parts of the world's cotton belt may be essential. The field experiment was conducted at Hill Cotton Research Station, Balaghata, Bandarban, Bangladesh during 2020-21 growing season to study the performance of SR 27 Cotton line (Gossypium arboreum L.) beneath numerous plants spacing. The treatments consisted of four plant spacings viz. 90cm × 45cm, 90cm × 30cm, 90cm × 15cm, 90cm × 10cm. The experiment was carried out with a randomized complete block design and repeated 3 times. The highest seed cotton yield (2705kg/ha) and plant number (68107) per hectare, were recorded with spacing of 90cm × 10cm which was significantly(p<0.01) more than 90cm × 45cm, 90cm × 30cm and 90cm ×15cm. But, other parameters like plant height (cm), node number of first fruiting branch (NFB), number of monopodial branches/plant, number of sympodial branch/plant, number of bolls/plant and single boll weight (gm) were statistically non-significant but they play a role in yield. So that, narrow (90cm × 10cm) plant spacing is better than others wider plant spacing for getting maximal seed cotton yield and plant population play a key factor to minimize yield losses

    EFFECTIVENESS OF MULTIMODAL PREEMPTIVE ANALGESIC THERAPY IN MAXILLOFACIAL SURGERY

    No full text
    This study was an attempt to find out the efficacy of pre-emptive analgesia in reducing post-operative pain. Multiple pre-emptive therapies were used in an attempt to see its superiority over single preemption. Pain scores showed significant differences between the pre-emptive and non pre-emptive groups. Pethidine consumed by the pre-emptive non-recipient group was much higher. Patient’s satisfaction was higher and post operative complications were less in the pre-emptive recipient group. Thus pre-emptive multimodal therapy would be better, in reducing post-operative pain, and the amount of post-operative analgesic requirement. It might be concluded that multimodal preemptive therapy by using I/V Ketorolac &amp; Bupivacaine infiltration is an effective method for post operative pain management in maxillofacial surgery. (Bangladesh J Physiol Pharmacol 2008; 24(1&amp;2) : 17-23

    Investigation of the impact of nonsynonymous mutations on thyroid peroxidase dimer.

    No full text
    Congenital hypothyroidism is one of the most common preventable endocrine disorders associated with thyroid dysgenesis or dyshormonogenesis. Thyroid peroxidase (TPO) gene defect is mainly responsible for dyshormonogenesis; a defect in the thyroid hormone biosynthesis pathway. In Bangladesh, there is limited data regarding the genetic etiology of Congenital Hypothyroidism (CH). The present study investigates the impact of the detected mutations (p.Ala373Ser, and p.Thr725Pro) on the TPO dimer protein. We have performed sequential molecular docking of H2O2 and I- ligands with both monomers of TPO dimer to understand the iodination process in thyroid hormone biosynthesis. Understanding homodimer interactions at the atomic level is a critical challenge to elucidate their biological mechanisms of action. The docking results reveal that mutations in the dimer severely disrupt its catalytic interaction with essential ligands. Molecular dynamics simulation has been performed to validate the docking results, thus realizing the consequence of the mutation in the biological system's mimic. The dynamics results expose that mutations destabilize the TPO dimer protein. Finally, principal component analysis exhibits structural and energy profile discrepancies in wild-type and mutant dimers. The findings of this study highlight that the mutations in TPO protein can critically affect the dimer structure and loss of enzymatic activity is persistent. Other factors also might influence the hormone synthesis pathway, which is under investigation

    Impaired acylcarnitine profile in transfusion-dependent beta-thalassemia major patients in Bangladesh

    No full text
    Patients with beta-thalassemia major (BTM) suffer from fatigue, poor physical fitness, muscle weakness, lethargy, and cardiac complications which are related to an energy crisis. Carnitine and acylcarnitine derivatives play important roles in fatty acid oxidation, and deregulation of carnitine and acylcarnitine metabolism may lead to an energy crisis. The present study aimed to investigate carnitine and acylcarnitine metabolites to gain an insight into the pathophysiology of BTM. Dried blood spots of 45 patients with BTM and 96 age-matched healthy controls were analyzed for free carnitine and 24 acylcarnitines by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Although medium chain acylcarnitine levels were similar in the patients with BTM and healthy controls, free carnitine, short chain acylcarnitines, long chain acylcarnitines, and total acylcarnitine levels were significantly lower in patients with BTM than in the healthy controls (P < 0.05). Moreover, an impaired fatty acid oxidation rate was observed in the patients with BTM, as manifested by decreased fatty acid oxidation indicator ratios, namely C2/C0 and (C2 + C3)/C0. Furthermore, an increase in the C0/(C16 + C18) ratio indicated reduced carnitine palmitoyltransferase-1 (CPT-1) activity in the patients with BTM compared with that in the healthy controls. Thus, a low level of free carnitine and acylcarnitines together with impaired CPT-1 activity contribute to energy crisis-related complications in the patients with BTM. Keywords: Beta-thalassemia major, Carnitine-acylcarnitine levels, Impairment in fatty acid oxidation, Carnitine Palmitoyltransferase-1 activit

    High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh

    No full text
    Abstract Background Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. Results Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. Conclusions Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and electrophortic indices in order to avoid false positive and false negative results

    Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach

    No full text
    Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity

    High resolution melting curve analysis enables rapid and reliable detection of G6PD variants in heterozygous females

    No full text
    Abstract Background Like glucose-6-phosphate dehydrogenase (G6PD) deficient hemizygous males and homozygous females, heterozygous females could also manifest hemolytic crisis, neonatal hyperbilirubinemia or kernicterus upon exposure to oxidative stress induced by certain foods such as fava beans, drugs or infections. Although hemizygous males and homozygous females are easily detected by conventional G6PD enzyme assay method, the heterozygous state could be missed by the conventional methods as the mosaic population of both normal and deficient RBCs circulates in the blood. Thus the present study aimed to apply high resolution melting (HRM) curve analysis approach to see whether HRM could be used as a supplemental approach to increase the chance of detection of G6PD heterozygosity. Results Sixty-three clinically suspected females were evaluated for G6PD status using both enzyme assay and HRM analysis. Four out of sixty-three participants came out as G6PD deficient by the enzyme assay method, whereas HRM approach could identify nine participants with G6PD variants, one homozygous and eight heterozygous. Although only three out of eight heterozygous samples had G6PD enzyme deficiency, the HRM-based heterozygous G6PD variants detection for the rest of the samples with normal G6PD enzyme activities could have significance because their newborns might fall victim to serious consequences under certain oxidative stress. Conclusions In addition to the G6PD enzyme assay, HRM curve analysis could be useful as a supplemental approach for detection of G6PD heterozygosity
    corecore